首页> 外文OA文献 >Identification of Carbohydrate Metabolism Genes in the Metagenome of a Marine Biofilm Community Shown to Be Dominated by Gammaproteobacteria and Bacteroidetes
【2h】

Identification of Carbohydrate Metabolism Genes in the Metagenome of a Marine Biofilm Community Shown to Be Dominated by Gammaproteobacteria and Bacteroidetes

机译:海洋生物膜群落的基因组中的碳水化合物代谢基因的鉴定表明,丙种细菌和拟杆菌占主导地位。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Polysaccharides are an important source of organic carbon in the marine environment and degradation of the insoluble and globally abundant cellulose is a major component of the marine carbon cycle. Although a number of species of cultured bacteria are known to degrade crystalline cellulose, little is known of the polysaccharide hydrolases expressed by cellulose-degrading microbial communities, particularly in the marine environment. Next generation 454 Pyrosequencing was applied to analyze the microbial community that colonizes and degrades insoluble polysaccharides in situ in the Irish Sea. The bioinformatics tool MG-RAST was used to examine the randomly sampled data for taxonomic markers and functional genes, and showed that the community was dominated by members of the Gammaproteobacteria and Bacteroidetes. Furthermore, the identification of 211 gene sequences matched to a custom-made database comprising the members of nine glycoside hydrolase families revealed an extensive repertoire of functional genes predicted to be involved in cellulose utilization. This demonstrates that the use of an in situ cellulose baiting method yielded a marine microbial metagenome considerably enriched in functional genes involved in polysaccharide degradation. The research reported here is the first designed to specifically address the bacterial communities that colonize and degrade cellulose in the marine environment and to evaluate the glycoside hydrolase (cellulase and chitinase) gene repertoire of that community, in the absence of the biases associated with PCR-based molecular techniques.
机译:多糖是海洋环境中有机碳的重要来源,不溶性和全球丰富的纤维素的降解是海洋碳循环的主要组成部分。尽管已知许多种类的培养细菌可降解结晶纤维素,但对降解纤维素的微生物群落表达的多糖水解酶知之甚少,特别是在海洋环境中。下一代454焦磷酸测序技术被用于分析在爱尔兰海中原位定居并降解不溶性多糖的微生物群落。生物信息学工具MG-RAST用于检查随机采样的分类标志和功能基因的数据,并显示该社区以丙型变形杆菌和拟杆菌属为主导。此外,对与包括9个糖苷水解酶家族成员的定制数据库匹配的211个基因序列的鉴定揭示了广泛的功能基因,这些功能基因预计与纤维素利用有关。这证明了使用原位纤维素诱饵方法产生了海洋微生物元基因组,该基因组相当丰富地参与了多糖降解的功能基因。在这里报道的这项研究是第一个专门针对海洋环境中定植和降解纤维素的细菌群落而设计的,并在没有与PCR相关的偏见的情况下评估该群落的糖苷水解酶(纤维素酶和几丁质酶)基因库。基础的分子技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号